ANG II and calmodulin/CaMKII regulate surface expression and functional activity of NBCe1 via separate means.
نویسندگان
چکیده
We recently reported that ANG II inhibits NBCe1 current and surface expression in Xenopus laevis oocytes (Perry C, Blaine J, Le H, and Grichtchenko II. Am J Physiol Renal Physiol 290: F417-F427, 2006). Here, we investigated mechanisms of ANG II-induced changes in NBCe1 surface expression. We showed that the PKC inhibitor GF109203X blocks and EGTA reduces surface cotransporter loss in ANG II-treated oocytes, suggesting roles for PKC and Ca(2+). Using the endosomal marker FM 4-64 and enhanced green fluorescent protein (EGFP)-tagged NBCe1, we showed that ANG II stimulates endocytosis of NBCe1. To eliminate the possibility that ANG II inhibits NBCe1 recycling, we demonstrated that the recycling inhibitor monensin decreases surface expression, accumulates NBCe1-EGFP in endosomes, and inhibits NBCe1 current. Monensin and ANG II applied together produce greater inhibition of NBCe1 current than either did alone. This additive effect of monensin and ANG II suggests that ANG II stimulates internalization of NBCe1. We used the calmodulin (CaM) antagonist W13, which controls recycling by blocking the exit of the endocytosed cargo from early endosomes, to determine the role of CaM in NBCe1 trafficking. We demonstrated that W13 decreases surface expression of NBCe1, accumulates NBCe1-EGFP in endosomal-like formations, and inhibits NBCe1 current. W13 and ANG II applied together produce greater inhibition of NBCe1 current than either does alone, while W13 and monensin applied together do not. The additive effect of ANG II and W13 and lack of additive effect of monensin and W13 suggest that CaM is not involved in ANG II stimulation of internalization but controls recycling of endocytosed NBCe1. The CaM-activated enzyme CaM kinase II (CaMKII) applied with ANG II also gives an additive inhibitory effect, suggesting a role for CaMKII in NBCe1 recycling.
منابع مشابه
Calcium/Calmodulin-Dependent Kinase II Inhibition in Smooth Muscle Reduces Angiotensin II–Induced Hypertension by Controlling Aortic Remodeling and Baroreceptor Function
BACKGROUND Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension. METHODS AND RESULTS Transgenic expression of ...
متن کاملCalmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy.
Despite our understanding that medial smooth muscle hypertrophy is a central feature of vascular remodeling, the molecular pathways underlying this pathology are still not well understood. Work over the past decade has illustrated a potential role for the multifunctional calmodulin-dependent kinase CaMKII in smooth muscle cell contraction, growth, and migration. Here we demonstrate that CaMKII ...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملChronotropic action of angiotensin II in neurons via protein kinase C and CaMKII.
Angiotensin II (Ang II) plays an important role in the central control of blood pressure and baroreflexes. These effects are initiated by stimulation of Ang II type 1 (AT(1)) receptors on neurons within the hypothalamus and brain stem, and involve increasing the activity of noradrenergic, substance P, and glutamatergic pathways. The goal of this study is to investigate the intracellular signali...
متن کاملGene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal
Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 293 1 شماره
صفحات -
تاریخ انتشار 2007